
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS Vol. 4, No. 9, September 2010, p. 1423 - 1426 
 

Computing symmetry of fullerene molecule C84 
 

D. SALMANIa, A. TAATIANa, M. FAGHANIb, M. GHORBANIc,* 

aSchool of Management, University of Tehran, Tehran, I. R. Iran 
bDepartment of Mathematics, Payam-e-Noor University, Tehran, I. R. Iran 
cDepartment of Mathematics, Faculty of Science, Shahid Rajaee, Teacher Training University, Tehran,  
16785-136, I. R. Iran  

 
 

Suppose M is a molecule and G is its molecular graph with atoms labeled by numbers 1, 2, … n. Define the adjacency 
matrix A = [aij] of G to be a 0-1 matrix with this property that aij = 1 if and only if the there is a bond connecting atoms i and j. 
An Euclidean graph associated to M is defined by a weighted graph with the adjacency matrix D = [dij], where for i ≠ j dij is 
the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. In 
this work a simple method is described, by means of which it is possible to calculate the automorphism group of weighted 
graphs. We apply this method to compute the symmetry of the fullerenes molecule C84. 
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1. Introduction 
 
Let F be a fullerene molecule with exactly p 

pentagons, h hexagons, n carbon atoms and m bonds. 
Since each atom lies in exactly 3 faces and each edge lies 
in 2 faces, the number of atoms is n = (5p+6h)/3, the 
number of edges is m = (5p+6h)/2 = 3/2n and the number 
of faces is f = p + h. By the Euler’s formula n − m + f = 2, 
one can deduce that (5p+6h)/3 – (5p+6h)/2 + p + h = 2, 
and therefore p = 12, v = 2h + 20 and e = 3h + 30. This 
implies that such molecules made up entirely of n carbon 
atoms and having 12 pentagonal and (n/2 − 10) hexagonal 
faces, where n ≠ 22 is a natural number equal or greater 
than 20 [1,2].  

In mathematics, groups are often used to describe 
symmetries of objects. To explain, we introduce some 
algebraic notion. A group is a tuple (S,o), where S is a set 
and  ◦ is a closed binary operation over S such that: 

•  o acts associatively: a o b o c = a o (b o c), for every  
   a, b, c ∈ S; 
•  there is a neutral element e such that a o e = e o a, 
   for every element of of S; 
•  each element has an inverse. 
In algebra and geometry ,a group action is a way of 

describing symmetries of objects using groups. The 
essential elements of the object are described by a set and 
the symmetries of the object are described by the 
symmetry group of this set, which consists of bijective 
transformations of the set. A group action is a flexible 
generalization of the notion of a symmetry group in which 
every element of the group "acts" like a bijective 
transformation (or" symmetry") of some set, without being 
identified with that transformation. This allows for a more 
comprehensive description of the symmetries of an object, 
such as a polyhedron ,by allowing the same group to act 
on several different sets, such as the set of vertices ,the set 
of edges and the set of faces of the polyhedron. If G is a 
group and X is a set then a group action may be defined as 

a group homomorphism from G to the symmetric group of 
X .The action assigns a permutation of X to each element 
of the group in such a way that 

•  the permutation of X assigned to the identity  
   element of G is the identity transformation of X; 
•  the permutation of X assigned to a product gh of two  
   elements of the group is the composite of the  
   permutations assigned to g and h. 
Since each element of G is represented as a 

permutation, a group action is also known as a permutation 
representation.  

Randic [3,4] showed that a graph can be depicted in 
different ways such that its point group symmetry or three 
dimensional perception may differ, but the underlying 
connectivity symmetry is still the same as characterized by 
the automorphism group of the graph. However, the 
molecular symmetry depends on the coordinates of the 
various nuclei which relate directly to its three 
dimensional geometry. Although the symmetry as 
perceived in graph theory by the automorphism group of 
the graph and the molecular group are quite different, it 
showed by Balasubramanian5-10 that the two symmetries 
are connected. 

 
 
2. Main results 
 
Detecting topological symmetry of molecules is a 

well-studied problem with applications in a large number 
of areas. The Euclidean matrix of a molecular graph G is a 
matrix D(G) = [dij], where for i ≠ j, dij is the Euclidean 
distance between the nuclei i and j. In this matrix dii can be 
taken as zero if all the nuclei are equivalent. Otherwise, 
one may introduce different weights for different nuclei. In 
this paper a new algorithm for computing topological 
symmetry of fullerene molecules is presented. We apply 
our algorithm on a fullerene molecule C84 with point group 
symmetry D6h. 
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A MATLAB Program for computing the symmetries of molecules 

n=length(a); 
for i=1:n-1 

for j=i+1:n 
b(i,j)=norm(a(i,:)-a(j,:)); 

end 
end 

b(n,n)=0; 
b=b+b'; 
 
function y=halat(s,a) 

t=1:length(a); 
m=length(s); 
t(s)=[]; 
j=0; 

for i=t 
if min(min(a(1:m+1,1:m+1)==a([s,i],[s,i])))==1 

    j=j+1; 
    y(j)=i; 

end 
end 

 
function s=hazf(s) 

m=size(s); 
for i=m(1):-1:1 

if min(s(i,:))==0 
s(i,:)=[]; 

end 
end 
 

function s=jaigasht(a) 
m=length(a); 

for i=1:m 
s(i,1)=i; 

end 
for j=2:m 

n=size(s); 
k=0; 

for i=1:n(1) 
y=[halat(s(i,:),a)]; 

for r=1:length(y) 
b(r+k,1:n(2)+1)=[s(i,:),y(r)]; 

end 
k=k+length(y); 

end 
s=b; 
s=hazf(s); 

end 
b=0; 
n=size(s); 

for i=1:n(1) 
for j=1:n(2) 

b(i,s(i,j))=j; 
end 

end 
s=b; 
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Our computations of the symmetry properties of 
molecules were carried out with the use of GAP [11]. GAP 
contains several functions for working with finite groups. 
For the sake of completeness, we describe some of these 
functions which are useful throughout. Let a1, a2, …, ar are 
permutations of {1,2,…,n}. The command 
“Group(a1,a2,…,ar)” computes the group generated by 
permutations a1, a2, …, ar. For two groups A and B, the 
commands “Size(A)”, “GeneratorsOfGroup(A)” and 
“Intersection(A,B)” compute the cardinality of the set A, a 
generator set for A and intersection of A and B, 
respectively. Finally the command “IsSimple(A)” 
determines whether or not A has a non-trivial proper 
normal subgroup. In this paper, we use freely these 
functions and the reader is encouraged to consult the 
manual of GAP, as well as papers by Ashrafi and his co-
workers [12-16]. We encourage the readers to consult 
papers [17-24] for background material as well as basic 
computational techniques. 

Consider the equation (Pσ)tAPσ = A, where A is the 
adjacency matrix of the weighted graph G. Suppose 
Aut(G) = {σ1, σ2,…, σm}. The matrix SG = [sij], where sij = 
σi(j) is called a solution matrix for G. Clearly, for 
computing the automorphism group of G, it is enough to 
calculate a solution matrix for G. In what follows we 
present a MATLAB program for computing a solution 
matrix for the automorphism group of Euclidean graphs.  

Our program needs the Cartesian coordinates of the 
atoms to determine the Euclidean distances in the 
molecule under consideration. If we calculate these 
distances by HyperChem [17] then for computing the 
symmetry of molecule under consideration, it is enough to 
delete the first eight lines of the program and load the 
distance matrix of the molecule under consideration. In 
Table 1, the Cartesian coordinates of the fullerene 
molecule C84 is given. 

 
 

Table 1. Cartesian coordinates of C84 molecule. 
 

No x y z 
1 1.909410 0.460660 -3.935100 
2 2.245510 -0.934470 -3.667500 
3 0.620070 0.805210 -4.279330 
4 1.273670 -1.907830 -3.758730 
5 1.213120 -2.936670 -2.759810 
6 -0.545580 4.129060 0.587030 
7 0.368610 3.850820 -0.450370 
8 0.029040 1.979650 -3.703430 
9 2.633900 1.283200 -3.008210 

10 2.030860   2.362860 -2.329810 
11 0.670560 2.726640 -2.693000 
12 -0.163310 3.473420 -1.750360 
13 3.552730 0.402130 -2.325110 
14 2.566560 2.743120 -1.021820 
15 1.738120 3.484910 -0.084970 
16 4.050840 0.755460 -1.109800 
17 3.657380 2.009630 -0.509910 
18 3.177090 -0.970270 -2.576140 
19 3.055950 -1.890540 -1.514130 
20 2.030380 -2.917250 -1.610020 
21 -1.391320 1.723450 -1.610020 
22 -1.564070 3.405840 -3.643810 
23 -2.166250 2.417110 -1.902710 

24 -1.957920 3.921380 -2.767480 
25 -2.462100 3.563550 0.437760 
26 -3.647380 -1.241250 -0.794370 
27 -3.960680 0.058550 1.857900 
28 -3.491340 2.532500 1.608220 
29 -2.453280 3.269050 -0.890200 
30 -3.425480 2.295980 1.646290 
31 -3.959360 1.917060 1.555780 
32 -3.309990 1.109720 0.251120 
33 1.039060 3.449460 2.355660 
34 -0.233410 3.789340 2.296040 
35 -1.345950 3.075130 1.956390 
36 -1.142080 1.863920 2.538680 
37 -2.167690 0.837720 3.232910 
38 2.070650 3.429800 3.137540 
39 3.889070 1.866110 1.284790 
40 3.103490 2.568890 0.899100 
41 -3.226820 1.740310 -2.057330 
42 -4.172500 0.497610 0.248210 
43 -3.795560 -0.317510 -0.839580 
44 -3.301860 0.331380 -2.043410 
45 -2.468080 -0.414930 -2.986620 
46 -1.634240 0.315100 -3.859010 
47 -0.409280 -0.225380 -4.375630 
48 -2.133350 -1.805170 -2.719850 
49 -0.993150 -2.347820 -3.348180 
50 -0.091960 -1.543050 -4.122890 
51 -3.528680 -2.174470 0.761450 
52 -2.630270 -2.458190 -1.507990 
53 -3.458780 -1.716570 -0.570950 
54 -0.174520 -3.329290 -2.673870 
55 -0.636250 -3.936090 -1.547670 
56 -1.942410 -3.594720 -1.033150 
57 -2.179730 -2.874020 2.548810 
58 -2.713970 -3.253050 1.244140 
59 -1.928710 -3.956110 0.355830 
60 -0.890120 -3.218990 2.892910 
61 1.269560 2.376750 3.236420 
62 0.227180 1.498070 3.598200 
63 0.562340 0.108230 3.865250 
64 -0.470050 -0.924810 3.769150 
65 -1.830700 -0.561030 3.406510 
66 -2.666320 -1.562210 2.869000 
67 -0.060550 -2.258930 3.563910 
68 2.925320 0.599350 3.248600 
69 2.607580 1.916950 2.995680 
70 2.257060 -1.603320 3.265820 
71 1.911540 -0.285590 3.747760 
72 1.297560 -2.563240 3.176210 
73 4.225200 0.470660 1.166690 
74 3.255270 -1.487190 2.227940 
75 3.757250 -0.144730 2.307900 
76 -0.562770 -4.320800 0.719920 
77 0.264100 -4.183850 -0.445170 
78 1.533600 -3.570400 -0.398310 
79 -0.058320 -3.962920 1.951950 
80 1.283130 -3.460660 2.043970 
81 2.065740 -3.192710 0.901360 
82 3.098130 -2.159500 0.997740 
83 3.591740 -1.510430 -0.206130 
84 4.200420 -0.244230 -0.077670 

 
Using these coordinates and our MATLAB program 

given above, one can see that the symmetry group of the 
C84 fullerene is isomorphic to the group S4. Suppose G is 
the symmetry group of this fullerene. Then G = 〈X, Y〉, 
where X and Y are the following permutations: 
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X = (1, 2)(3, 4)(5, 8)(6,80)(7,81)(9,18)(10,19)(11,20)(12,78)(14,83)(15,82) 
       (17,84)(21,54)(22,77)(23,55)(24,79)(25,76)(26,27)(28,59)(29,60)(30,57) 
       (31,58)(32,66)(33,70)(34,72)(35,67)(36,64)(37,65)(38,74)(39,73)(40,75) 
       (41,56)(42,51)(43,53)(44,52)(45,48)(46,49)(47,50)(61,71)(62,63)(68,69), 
 
Y = (1,76,31,69)(2,59,30,40)(3,79,28,68)(4,58,29,39)(5,51,35,17) 
       (6,84,49,66)(7,83,48,65)(8,80,41,71)(9,77,42,61)(10,78,43,62) 
       (11,81,44,63)(12,82,45,64)(13,55,27,33)(14,20,53,36)(15,19,52,37) 
       (16,54,26,34)(18,56,32,38)(21,72,23,70)(22,74,46,67)(24,73,50,57) (25,75,47,60). 
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